GTS Mock Test(Math)-I : Rank List

Rank

Name

Place

Marks

(Out of 100)

I

Prakash Kumar Pandey

 

90

II

Vidhi Srivastava

Gopalganj

N/A

To be continued…

VERMA Classes : Intro

Hi friends,

I ‘Diwakar Kumar Verma’ want to inform you that this icon is for my institute VERMA Classes. Whenever you click it, you will get updates about the institute.

You can also open it to know the ranks of students in the test series conducted by VERMA Classes for Math & Chemistry for 12th board exam 2020.

Periodic Table

The periodic table is a tool which helps us to study about 118 elements whether natural or synthetic and their compounds in a systematic way.

History of classification of elements : Till 18th century only a few elements and their compounds were known. so, it was easier to remember them. But, from the beginning of 19th century, the rate of discovery of elements and their compounds became fast and hence, the classification of elements became essential so that we can easily study about the properties of elements and their compounds.

Several chemists tried to classify elements. Some of them are as follows :

1. Doebereiner’s Triads : In 1817, a German chemist Johann Wolfgang Doebereiner presented the first classification of elements. In this classification, he prepared several groups of three elements called ‘Triads’ having similar properties. He told that the atomic weight of the middle element was the average of the rest two elements.

Ex : 1st Triads : Li(7), Na(23) & K(39) , 2nd Triad : Ca(40), Sr(87.5) & Ba(137) etc.

2. Newland’s Law of Octaves : In 1865, an English chemist John Alexander Newland  gave another idea of classifying elements. He showed that when elements are arranged in the increasing order of their atomic weights each 8th element has similar properties as the 1st one.  This is known as his law of octaves.

Element Li Be B C N O F
At wt 7 9 11 12 14 16 19
Element Na Mg Al Si P S Cl
At wt 23 24 27 29 31 32 35.5
Element K Ca          
At wt 39 40          

We can see that Li & Na have similar properties and so on.

3. Lothar Meyer’s Curve : In 1865, a German chemist Lothar Meyer plotted a graph between atomic volumes and atomic weights of elements. He found that elements with similar properties occupy the similar places on the curve. For example, the alkali metals lie on the top points on the curve.

4. Mendeleev’s Periodic Table : The most effective and systematic classification of elements was presented by a Russian chemist Dmitri Ivanovich Mendeleev. He proposed a law which is known as Mendeleev’s periodic law stated as follows :

The properties of elements are periodic functions of their atomic weights. 

He arranged elements according to their increasing atomic weights and found that elements with similar properties are repeated after certain intervals. The key points related to his periodic table are as follows:

  1. There are nine vertical columns which are called groups. These groups are denoted as 0, I, II, III,…….VIII.
  2. Each group except 0 and VIII has been divided in two sub-groups A and B.
  3. There are 7 horizontal rows which are known as periods.

Importance of Mendeleev’s periodic table : The periodic table developed by Mendeleev made several contributions to the study of chemistry. Some of its important contributions are as follows :

  1. Systematic study of chemistry : This periodic table made the study of elements and their compounds easy and simple. One can easily know the elements with similar properties by the help of groups. Also the periodicity in the properties of elements can be understood through the arrangement of elements in groups and periods.
Updated on 31 July 2019…

 

Electro Magnetic Radiations(EMR)

Electromagnetic radiations(EMR) : Charged particles on moving with acceleration produce alternating electrical and magnetic fields which transmit in the form of waves and are called electromagnetic radiations or electromagnetic waves. James Maxwell was the first scientist who described EMR in 1870.

Properties of EMR : The properties of electromagnetic radiations are as follows :

1. The electric and magnetic fields generated by oscillating charged particles are perpendicular to each other and also perpendicular to the direction of propagation.

2. EMR do not require any medium to travel i.e. they can travel even in vacuum.

3. Electromagnetic radiations constitute spectrum which has been divided into different regions and Each EMR lies in a particular region.

4. Electromagnetic radiations are expressed by the help of their characteristic properties as follows :

Wavelength : The distance between two consecutive crests and troughs is called the wavelength. It’s denoted by λ(Lambda) and its unit is ‘m’.

Frequency : The number of waves passing through a point per second is called frequency. It generally denoted by ν. Its unit is Hz or s

1.

Wave number : The number of wavelengths per unit of length is called the wave number. It is denoted by .The unit of wave number is m-1.

Key point : If the velocity of light is c, wavelength is λ and frequency is ν; then c = νλ

Electromagnetic spectrum : When different types of electromagnetic radiations are arranged according to their decreasing frequencies or increasing wavelengths, then the arrangement is called the electromagnetic spectrum.

Atomic Models

After the discoveries of electron, proton and neutron, scientists made efforts to understand their arrangement inside an atom. The arrangement of subatomic particles inside an atom is called an atomic model.

Thomson model : The British physicist J J Thomson presented his atomic model in 1898 which is also called watermelon model or raisin pudding model. According to this model :

1. The positive charge is uniformly distributed inside an atom.

2. The negative charge i. e. electrons are distributed in such a way that the atom becomes neutral.

Limitations of Thomson model : Thomson model was able to describe the neutrality of an atom but it didn’t answer many other questions like –

Why do only electrons involve in a chemical reaction?

Why are there electric and magnetic fields of an atom?

Rutherford’s nuclear atomic model : Rutherford presented his model in 1911 on the basis of his alpha scattering experiment.

Experiment : In this experiment a very thin (about 100 nm) gold foil was taken and it was bombarded with α particles. Gold foil was surrounded by a fluorescent screen of ZnS. A tiny flash of light is observed when α particles strike the screen.

Observations : In the experiment Rutherford made following observations :

I. Maximum α-particles pass through the foil undeflected.

II. A few α-particles are deflected with small angles.

III. A very few α-particles (1 in 20000) bounced back.

Conclusions : On the basis of above observations, Rutherford made some conclusions given below :

I. Most of α-particles pass without any deflection. It means that maximum space inside an atom is vacant.

II. Few α-particles are deflected. It means that there is a small positive charge in the centre of an atom and α-particles face repulsion.

Bohr’s atomic model for Hydrogen: In 1913, Neils Bohr presented his model for Hydrogen atom on the basis of his research and experiments. The postulates of his atomic model are as follows:

1. The electron moves on a circular path called an orbit. Orbits can also be called stationary states or energy states because they have fixed energy. All orbits are concentric and have fixed radius with nucleus as the centre.

2. In an orbit, the energy of an electron is fixed. But, when it jumps from the lower energy state to the higher one, it absorbs energy. It loses energy when it falls from the higher energy state to the lower one.

Quantum mechnical model : To answer many questions which were not entertained by Bohr’s model, another model was presnted by Shrodinger which is called Quantum mechanical model. The postulates of this model were as follows :

1. Electrons show dual nature i.e. particle and wave nature.

2. To find the correct location and velocity of an electron simultaneously is not possible.

3.

How to be good at Mathematics?

Mathematics is one of the most important subjects we study. But, maximum students fear from it. I’ve experienced that students fear from it because they don’t know the best way to study it.

I’m just going to share some effective techniques to study math on the basis of my research and experience. I wish it will help you a lot whether you are a JEE or NEET aspirant or a student of any class.

I. Understand the concepts: The first step towards commanding mathematics is to study your text books line by line and to try to understand the theoretical part by the help of examples. To understand the concepts you may have to take help from your teacher.

II. Applications of concepts : The 2nd step is to grasp the applications of concepts. For doing so you must go through the example given before the exercises.

Maximum students skip the example section and attempt the exercise directly due to which they are not able to solve majority of questions. So, I always insist on solving example first. When you do examples you can observe the uses of different results and formulae.

III. Attempt the exercise : Once you go through all the examples, you should start to solve questions in the exercise. Try to solve questions on your own. It will help you to grow your thinking capacity.

If you are unable to solve any question, you can take help from examples or you teacher.

IV. Set a daily target : I always encourage students to follow the ‘Target Based Study. You can set a target of trying at least a definite number of questions per day. It generally helps not only in completing your syllabus in time but also it makes your study easier.

Suppose you have 5000 questions in your book and you have to finish it in a year i.e. 365 days. You just need to solve at least 15 days.

Carboxylic Acids

Carboxylic acids are very important organic compounds. They contain carboxyl functional group(-COOH). The carboxyl name has been derived from carbonyl(-CO) and hydroxyl(-OH). Carboxylic acids may be aliphatic or aromatic on the basis of the group alkyl or aryl attached to the carbon atom of the carboxyl group.

Fatty acids : Aliphatic carboxylic acids from C12 to C18 are called fatty acids.

Nomenclature : I. Common names :

  1. To get common names of carboxylic acids, we add a suffix -ic acid in the names obtained by Greek or Latin words for their natural sources. Ex : HCOOH is called formic acid because it was first obtained from red ants and the latin word for ants is formica. Some more examples are : CH3COOH –  Acetic Acid/ C3H7COOH-Butyric Acid

II. IUPAC names :

  1. In IUPAC system, we replace -e by -oic acid at the end of an alkane for aliphatic carboxylic acids.
  2. The numbering is started from the carboxylic carbon in the parent chain.
  3. To name a carboxylic acid having more than one carboxyl group -e of alkane is retained at the end and the number of carboxyl groups is expressed by prefixes like di, tri, tetra etc.
  4. The position of -COOH group is indicated by numerals 1,2,3…

Structure of the carboxyl group : The bonds to the carboxyl carbon in a carboxylic acid are coplanar. The angle between the bonds is 1200. The resonance structures of the carboxyl group is as follows:

Preparation of carboxylic acids :

1.From primary alcohols : When primary alcohols are oxidised by KMnO4 in neutral, acidic or alkaline medium or K2Cr2O7 and CrO3 in acidic, carboxylic acids are produced. Ex :

2.From primary aldehydes : When aldehydes are oxidised by mild oxidising agents, they give carboxylic acids.

3.From alkylbenzenes : Alkylbenzenes give aromatic carboxylic acids on oxidation by chromic acid or acidic or alkaline KMnO4. But, only primary and secondary alkyl groups are oxidised by this manner. Tertiary groups are not affected.

 

Radioactivity

Some substances which emit radiation on their own are called radioactive substances and such an event is called radioactivity.

The event of radioactivity was observed by the chemist Henri Becquerel.

Generally, radioactive substances emit three types of radiations or rays –

Alpha rays : Particles in alpha rays are similar to He nucleus with positive charge.

Beta rays : Beta particles are negatively charged and they are similar to electrons.

Gamma rays : Gamma rays are similar to X-rays.

Penetrating power : The penetrating power of beta rays is 100 times more than that of alpha rays and the penetrating power of gamma rays is 1000 times more than that of alpha rays.

Surface Chemistry : Colloids

A heterogeneous solution in which the diameter of the solute particles is in the range 1nm to 1000nm is called a colloid.

The solute and solvent are called dispersed phase and dispersion medium respectively in case of a colloid.

◆ Methods of preparation of colloids : Colloids are prepared by following methods-

1. Chemical methods : There are several methods to prepare colloids like oxidation, reduction, hydrolysis, double decomposition etc. All these methods can be called condensation methods because molecules aggregate together to form sols.

I. Double decomposition : As2O3 + 3H2S  → As2S3 (Sol)+ 3H2O

II. Hydrolysis : FeCl3 + 3H2O → Fe(OH)3 (Sol)+ 3HCl

III. Oxidation : SO2 + 2H2S → 3S(Sol) + 2H2O

IV. Reduction : 2 AuCl3 + 3 HCHO + 3H2O  → 2Au(Sol) + 3HCOOH

2. Electrical Disintegration or Bredig’s Arc Method : This method is used to prepare sols of metals like gold, silver, platinum etc. The colloid is formed by the involvement of both dispersion and condensation.

Process : In this method an electric arc is struck between metal electrodes immersed in the dispersion medium. The metal is first vaporised due to intense heat and then condenses to form parties of colloidal size. This, a colloid is prepared.

3. Peptisation : The process of converting a precipitate into colloidal sol by shaking it with dispersion medium in the presence of an electrolyte is called peptisation.

The electrolyte used for this purpose is called the peptising agent.

Process : In this process the precipitate adsorbs one of the ions of the electrolyte on its surface. It causes the development of positive or negative charge on precipitates due to which precipitate particles break up into smaller particles of colloidal size. Thus, a colloid is formed.

Purification of colloidal solution : While forming a colloidal solution some impurities enter into it. Sometimes electrolytes are in the excess. Due to these impurities a colloidal particles may coagulate and the solution may be spoiled.

Properties of colloids : 1. Colligative properties :

2.Charge on colloidal particles : There is charge on each particle of the dispersed phase in a colloidal solution. The reason behind it are as follows:

I. Frictional electrification :  One the reasons responsible for charge on the particles of the dispersed phase is the rubbing of the particles of the dispersed phase with those of the dispersion medium.

II. Dissociation of molecules :

III. Selective adsorption of ions :

 

Crystal Field Theory

Coordination compounds have magnetic and optical properties. They also show colour. To explain these properties shown by coordination compounds H Bethe presented his Crystal Field Theory in 1929.

The main points of this theory are as follows:

1. The nature of bonding in the complexes is electrostatic i.e. the metal ligand bond is supposed to be ionic.

2.Anionic ligands are supposed negative points or point charges & neutral ligands are taken as point dipoles.

3.CFT is based on the concept of splitting of d-orbitals.

Partition of d-orbitals: The five d-orbitals are divided into two sets: t2g (dxy, dyz and dxz) and  eg(dx2-y2 and dz2)

I.The crystal field splitting in octahedral coordination entities: In an octahedral coordination entity, there is repulsion between the electrons of d-orbitals of the central atom or ion and the electrons of the ligands.

The repulsion is more when d-orbitals are directed towards ligands,  than when they are away from ligands. Since, eorbitals which are along axes i.e. in the direction of ligands face more repulsion which finally leads the raising of energy of orbitals and the energy of t2g orbitals is lowered. Due to this, d-orbitals are splitted as follows:

.

.

The splitting of degenerate orbitals due to the presence of ligands is called crystal field splitting.

Crystal field splitting energy or crystal field stablising energy(CFSE): The energy required for the separation of d-orbitals is called CFSE. It is denoted by ∆o.

%d bloggers like this: